Abstract:There is an overwhelming abundance of works in AI Ethics. This growth is chaotic because of how sudden it is, its volume, and its multidisciplinary nature. This makes difficult to keep track of debates, and to systematically characterize goals, research questions, methods, and expertise required by AI ethicists. In this article, I show that the relation between AI and ethics can be characterized in at least three ways, which correspond to three well-represented kinds of AI ethics: ethics and AI; ethics in AI; ethics of AI. I elucidate the features of these three kinds of AI Ethics, characterize their research questions, and identify the kind of expertise that each kind needs. I also show how certain criticisms to AI ethics are misplaced, as being done from the point of view of one kind of AI ethics, to another kind with different goals. All in all, this work sheds light on the nature of AI ethics, and sets the groundwork for more informed discussions about the scope, methods, and training of AI ethicists.
Abstract:In recent years, the dissemination of machine learning (ML) methodologies in scientific research has prompted discussions on theory ladenness. More specifically, the issue of theory ladenness has remerged as questions about whether and how ML models (MLMs) and ML modelling strategies are impacted by the domain theory of the scientific field in which ML is used and implemented (e.g., physics, chemistry, biology, etc). On the one hand, some have argued that there is no difference between traditional (pre ML) and ML assisted science. In both cases, theory plays an essential and unavoidable role in the analysis of phenomena and the construction and use of models. Others have argued instead that ML methodologies and models are theory independent and, in some cases, even theory free. In this article, we argue that both positions are overly simplistic and do not advance our understanding of the interplay between ML methods and domain theories. Specifically, we provide an analysis of theory ladenness in ML assisted science. Our analysis reveals that, while the construction of MLMs can be relatively independent of domain theory, the practical implementation and interpretation of these models within a given specific domain still relies on fundamental theoretical assumptions and background knowledge.