Abstract:Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .
Abstract:Dialogue systems is an increasingly popular task of natural language processing. However, the dialogue paths tend to be deterministic, restricted to the system rails, regardless of the given request or input text. Recent advances in program synthesis have led to systems which can synthesize programs from very general search spaces, e.g. Programming by Example, and to systems with very accessible interfaces for writing programs, e.g. text-to-code translation, but have not achieved both of these qualities in the same system. We propose Modular Programs for Text-guided Hierarchical Synthesis (MPaTHS), a method for integrating Programming by Example and text-to-code systems which offers an accessible natural language interface for synthesizing general programs. We present a program representation that allows our method to be applied to the problem of task-oriented dialogue. Finally, we demo MPaTHS using our program representation.