Abstract:Progress in Type 1 Diabetes (T1D) algorithm development is limited by the fragmentation and lack of standardization across existing T1D management datasets. Current datasets differ substantially in structure and are time-consuming to access and process, which impedes data integration and reduces the comparability and generalizability of algorithmic developments. This work aims to establish a unified and accessible data resource for T1D algorithm development. Multiple publicly available T1D datasets were consolidated into a unified resource, termed the MetaboNet dataset. Inclusion required the availability of both continuous glucose monitoring (CGM) data and corresponding insulin pump dosing records. Additionally, auxiliary information such as reported carbohydrate intake and physical activity was retained when present. The MetaboNet dataset comprises 3135 subjects and 1228 patient-years of overlapping CGM and insulin data, making it substantially larger than existing standalone benchmark datasets. The resource is distributed as a fully public subset available for immediate download at https://metabo-net.org/ , and with a Data Use Agreement (DUA)-restricted subset accessible through their respective application processes. For the datasets in the latter subset, processing pipelines are provided to automatically convert the data into the standardized MetaboNet format. A consolidated public dataset for T1D research is presented, and the access pathways for both its unrestricted and DUA-governed components are described. The resulting dataset covers a broad range of glycemic profiles and demographics and thus can yield more generalizable algorithmic performance than individual datasets.
Abstract:We present the design and \textit{in-silico} evaluation of a closed-loop insulin delivery algorithm to treat type 1 diabetes (T1D) consisting in a data-driven multi-step-ahead blood glucose (BG) predictor integrated into a Linear Time-Varying (LTV) Model Predictive Control (MPC) framework. Instead of identifying an open-loop model of the glucoregulatory system from available data, we propose to directly fit the entire BG prediction over a predefined prediction horizon to be used in the MPC, as a nonlinear function of past input-ouput data and an affine function of future insulin control inputs. For the nonlinear part, a Long Short-Term Memory (LSTM) network is proposed, while for the affine component a linear regression model is chosen. To assess benefits and drawbacks when compared to a traditional linear MPC based on an auto-regressive with exogenous (ARX) input model identified from data, we evaluated the proposed LSTM-MPC controller in three simulation scenarios: a nominal case with 3 meals per day, a random meal disturbances case where meals were generated with a recently published meal generator, and a case with 25$\%$ decrease in the insulin sensitivity. Further, in all the scenarios, no feedforward meal bolus was administered. For the more challenging random meal generation scenario, the mean $\pm$ standard deviation percent time in the range 70-180 [mg/dL] was 74.99 $\pm$ 7.09 vs. 54.15 $\pm$ 14.89, the mean $\pm$ standard deviation percent time in the tighter range 70-140 [mg/dL] was 47.78$\pm$8.55 vs. 34.62 $\pm$9.04, while the mean $\pm$ standard deviation percent time in sever hypoglycemia, i.e., $<$ 54 [mg/dl] was 1.00$\pm$3.18 vs. 9.45$\pm$11.71, for our proposed LSTM-MPC controller and the traditional ARX-MPC, respectively. Our approach provided accurate predictions of future glucose concentrations and good closed-loop performances of the overall MPC controller.