Abstract:Within the context of creating new Socially Assistive Robots, emotion recognition has become a key development factor, as it allows the robot to adapt to the user's emotional state in the wild. In this work, we focused on the analysis of two voice recording Spanish datasets: ELRA-S0329 and EmoMatchSpanishDB. Specifically, we centered our work in the paralanguage, e.~g. the vocal characteristics that go along with the message and clarifies the meaning. We proposed the use of the DeepSpectrum method, which consists of extracting a visual representation of the audio tracks and feeding them to a pretrained CNN model. For the classification task, DeepSpectrum is often paired with a Support Vector Classifier --DS-SVC--, or a Fully-Connected deep-learning classifier --DS-FC--. We compared the results of the DS-SVC and DS-FC architectures with the state-of-the-art (SOTA) for ELRA-S0329 and EmoMatchSpanishDB. Moreover, we proposed our own classifier based upon Attention Mechanisms, namely DS-AM. We trained all models against both datasets, and we found that our DS-AM model outperforms the SOTA models for the datasets and the SOTA DeepSpectrum architectures. Finally, we trained our DS-AM model in one dataset and tested it in the other, to simulate real-world conditions on how biased is the model to the dataset.
Abstract:We present our contribution to the 7th ABAW challenge at ECCV 2024, by utilizing a Dual-Direction Attention Mixed Feature Network for multitask facial expression recognition we achieve results far beyond the proposed baseline for the Multi-Task ABAW challenge. Our proposal uses the well-known DDAMFN architecture as base to effectively predict valence-arousal, emotion recognition, and action units. We demonstrate the architecture ability to handle these tasks simultaneously, providing insights into its architecture and the rationale behind its design. Additionally, we compare our results for a multitask solution with independent single-task performance.