Abstract:Personalised discount codes provide a powerful mechanism for managing customer relationships and operational spend in e-commerce. Bandits are well suited for this product area, given the partial information nature of the problem, as well as the need for adaptation to the changing business environment. Here, we introduce DISCO, an end-to-end contextual bandit framework for personalised discount code allocation at ASOS. DISCO adapts the traditional Thompson Sampling algorithm by integrating it within an integer program, thereby allowing for operational cost control. Because bandit learning is often worse with high dimensional actions, we focused on building low dimensional action and context representations that were nonetheless capable of good accuracy. Additionally, we sought to build a model that preserved the relationship between price and sales, in which customers increasing their purchasing in response to lower prices ("negative price elasticity"). These aims were achieved by using radial basis functions to represent the continuous (i.e. infinite armed) action space, in combination with context embeddings extracted from a neural network. These feature representations were used within a Thompson Sampling framework to facilitate exploration, and further integrated with an integer program to allocate discount codes across ASOS's customer base. These modelling decisions result in a reward model that (a) enables pooled learning across similar actions, (b) is highly accurate, including in extrapolation, and (c) preserves the expected negative price elasticity. Through offline analysis, we show that DISCO is able to effectively enact exploration and improves its performance over time, despite the global constraint. Finally, we subjected DISCO to a rigorous online A/B test, and find that it achieves a significant improvement of >1% in average basket value, relative to the legacy systems.
Abstract:Managing discount promotional events ("markdown") is a significant part of running an e-commerce business, and inefficiencies here can significantly hamper a retailer's profitability. Traditional approaches for tackling this problem rely heavily on price elasticity modelling. However, the partial information nature of price elasticity modelling, together with the non-negotiable responsibility for protecting profitability, mean that machine learning practitioners must often go through great lengths to define strategies for measuring offline model quality. In the face of this, many retailers fall back on rule-based methods, thus forgoing significant gains in profitability that can be captured by machine learning. In this paper, we introduce two novel end-to-end markdown management systems for optimising markdown at different stages of a retailer's journey. The first system, "Ithax", enacts a rational supply-side pricing strategy without demand estimation, and can be usefully deployed as a "cold start" solution to collect markdown data while maintaining revenue control. The second system, "Promotheus", presents a full framework for markdown optimization with price elasticity. We describe in detail the specific modelling and validation procedures that, within our experience, have been crucial to building a system that performs robustly in the real world. Both markdown systems achieve superior profitability compared to decisions made by our experienced operations teams in a controlled online test, with improvements of 86% (Promotheus) and 79% (Ithax) relative to manual strategies. These systems have been deployed to manage markdown at ASOS.com, and both systems can be fruitfully deployed for price optimization across a wide variety of retail e-commerce settings.