Abstract:We present an approach for interpreting a black-box alarming system for forecasting accidents and anomalies during the drilling of oil and gas wells. The interpretation methodology aims to explain the local behavior of the accident predictive model to drilling engineers. The explanatory model uses Shapley additive explanations analysis of features, obtained through Bag-of-features representation of telemetry logs used during the drilling accident forecasting phase. Validation shows that the explanatory model has 15% precision at 70% recall, and overcomes the metric values of a random baseline and multi-head attention neural network. These results justify that the developed explanatory model is better aligned with explanations of drilling engineers, than the state-of-the-art method. The joint performance of explanatory and Bag-of-features models allows drilling engineers to understand the logic behind the system decisions at the particular moment, pay attention to highlighted telemetry regions, and correspondingly, increase the trust level in the accident forecasting alarms.
Abstract:We present a data-driven and physics-informed algorithm for drilling accident forecasting. The core machine-learning algorithm uses the data from the drilling telemetry representing the time-series. We have developed a Bag-of-features representation of the time series that enables the algorithm to predict the probabilities of six types of drilling accidents in real-time. The machine-learning model is trained on the 125 past drilling accidents from 100 different Russian oil and gas wells. Validation shows that the model can forecast 70% of drilling accidents with a false positive rate equals to 40%. The model addresses partial prevention of the drilling accidents at the well construction.
Abstract:One of the main challenges in the construction of oil and gas wells is the need to detect and avoid abnormal situations, which can lead to accidents. Accidents have some indicators that help to find them during the drilling process. In this article, we present a data-driven model trained on historical data from drilling accidents that can detect different types of accidents using real-time signals. The results show that using the time-series comparison, based on aggregated statistics and gradient boosting classification, it is possible to detect an anomaly and identify its type by comparing current measurements while drilling with the stored ones from the database of accidents.