Abstract:This paper introduces the architecture of a convolutional autoencoder (CAE) for the task of peak-to-average power ratio (PAPR) reduction and waveform design, for orthogonal frequency division multiplexing (OFDM) systems. The proposed architecture integrates a PAPR reduction block and a non-linear high power amplifier (HPA) model. We apply gradual loss learning for multi-objective optimization. We analyze the models performance by examining the bit error rate (BER), the PAPR and the spectral response, and comparing them with common PAPR reduction algorithms.
Abstract:In this paper, we study the usage of Convolutional Neural Network (CNN) estimators for the task of Multiple-Input-Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Channel Estimation (CE). Specifically, the CNN estimators interpolate the channel values of reference signals for estimating the channel of the full OFDM resource element (RE) matrix. We have designed a 2D CNN architecture based on U-net, and a 3D CNN architecture for handling spatial correlation. We investigate the performance of various CNN architectures fora diverse data set generated according to the 5G NR standard and in particular, we investigate the influence of spatial correlation, Doppler, and reference signal resource allocation. The CE CNN estimators are then integrated with MIMO detection algorithms for testing their influence on the system level Bit Error Rate(BER) performance.