Abstract:The \textit{local learning coefficient} (LLC) is a principled way of quantifying model complexity, originally derived in the context of Bayesian statistics using singular learning theory (SLT). Several methods are known for numerically estimating the local learning coefficient, but so far these methods have not been extended to the scale of modern deep learning architectures or data sets. Using a method developed in {\tt arXiv:2308.12108 [stat.ML]} we empirically show how the LLC may be measured accurately and self-consistently for deep linear networks (DLNs) up to 100M parameters. We also show that the estimated LLC has the rescaling invariance that holds for the theoretical quantity.
Abstract:We investigate phase transitions in a Toy Model of Superposition (TMS) using Singular Learning Theory (SLT). We derive a closed formula for the theoretical loss and, in the case of two hidden dimensions, discover that regular $k$-gons are critical points. We present supporting theory indicating that the local learning coefficient (a geometric invariant) of these $k$-gons determines phase transitions in the Bayesian posterior as a function of training sample size. We then show empirically that the same $k$-gon critical points also determine the behavior of SGD training. The picture that emerges adds evidence to the conjecture that the SGD learning trajectory is subject to a sequential learning mechanism. Specifically, we find that the learning process in TMS, be it through SGD or Bayesian learning, can be characterized by a journey through parameter space from regions of high loss and low complexity to regions of low loss and high complexity.
Abstract:Deep neural networks (DNN) are singular statistical models which exhibit complex degeneracies. In this work, we illustrate how a quantity known as the \emph{learning coefficient} introduced in singular learning theory quantifies precisely the degree of degeneracy in deep neural networks. Importantly, we will demonstrate that degeneracy in DNN cannot be accounted for by simply counting the number of "flat" directions. We propose a computationally scalable approximation of a localized version of the learning coefficient using stochastic gradient Langevin dynamics. To validate our approach, we demonstrate its accuracy in low-dimensional models with known theoretical values. Importantly, the local learning coefficient can correctly recover the ordering of degeneracy between various parameter regions of interest. An experiment on MNIST shows the local learning coefficient can reveal the inductive bias of stochastic opitmizers for more or less degenerate critical points.
Abstract:In this work, we advocate for the importance of singular learning theory (SLT) as it pertains to the theory and practice of variational inference in Bayesian neural networks (BNNs). To begin, using SLT, we lay to rest some of the confusion surrounding discrepancies between downstream predictive performance measured via e.g., the test log predictive density, and the variational objective. Next, we use the SLT-corrected asymptotic form for singular posterior distributions to inform the design of the variational family itself. Specifically, we build upon the idealized variational family introduced in \citet{bhattacharya_evidence_2020} which is theoretically appealing but practically intractable. Our proposal takes shape as a normalizing flow where the base distribution is a carefully-initialized generalized gamma. We conduct experiments comparing this to the canonical Gaussian base distribution and show improvements in terms of variational free energy and variational generalization error.