Abstract:The interest in mobile platforms across a variety of applications has increased significantly in recent years. One of the reasons is the ability to achieve accurate navigation by using low-cost sensors. To this end, inertial sensors are fused with global navigation satellite systems (GNSS) signals. GNSS outages during platform operation can result in pure inertial navigation, causing the navigation solution to drift. In such situations, periodic trajectories with dedicated algorithms were suggested to mitigate the drift. With periodic dynamics, inertial deep learning approaches can capture the motion more accurately and provide accurate dead-reckoning for drones and mobile robots. In this paper, we propose approaches to extend deep learning-assisted inertial sensing and fusion capabilities during periodic motion. We begin by demonstrating that fusion between GNSS and inertial sensors in periodic trajectories achieves better accuracy compared to straight-line trajectories. Next, we propose an empowered network architecture to accurately regress the change in distance of the platform. Utilizing this network, we drive a hybrid approach for a neural-inertial fusion filter. Finally, we utilize this approach for situations when GNSS is available and show its benefits. A dataset of 337 minutes of data collected from inertial sensors mounted on a mobile robot and a quadrotor is used to evaluate our approaches.
Abstract:Quadrotors are widely used for surveillance, mapping, and deliveries. In several scenarios the quadrotor operates in pure inertial navigation mode resulting in a navigation solution drift. To handle such situations and bind the navigation drift, the quadrotor dead reckoning (QDR) approach requires flying the quadrotor in a periodic trajectory. Then, using model or learning based approaches the quadrotor position vector can be estimated. We propose to use multiple inertial measurement units (MIMU) to improve the positioning accuracy of the QDR approach. Several methods to utilize MIMU data in a deep learning framework are derived and evaluated. Field experiments were conducted to validate the proposed approach and show its benefits.