Abstract:In recent years, monitoring the world wide area with satellite images has been emerged as an important issue. Site monitoring task can be divided into two independent tasks; 1) Change Detection and 2) Anomaly Event Detection. Unlike to change detection research is actively conducted based on the numerous datasets(\eg LEVIR-CD, WHU-CD, S2Looking, xView2 and etc...) to meet up the expectations of industries or governments, research on AI models for detecting anomaly events is passively and rarely conducted. In this paper, we introduce a novel satellite imagery dataset(AED-RS) for detecting anomaly events on the open public places. AED-RS Dataset contains satellite images of normal and abnormal situations of 8 open public places from all over the world. Each places are labeled with different criteria based on the difference of characteristics of each places. With this dataset, we introduce a baseline model for our dataset TB-FLOW, which can be trained in weakly-supervised manner and shows reasonable performance on the AED-RS Dataset compared with the other NF(Normalizing-Flow) based anomaly detection models. Our dataset and code will be publicly open in \url{https://github.com/SIAnalytics/RS_AnomalyDetection.git}.
Abstract:Two out of three people will be living in urban areas by 2050, as projected by the United Nations, emphasizing the need for sustainable urban development and monitoring. Common urban footprint data provide high-resolution city extents but lack essential information on the distribution, pattern, and characteristics. The Local Climate Zone (LCZ) offers an efficient and standardized framework that can delineate the internal structure and characteristics of urban areas. Global-scale LCZ mapping has been explored, but are limited by low accuracy, variable labeling quality, or domain adaptation challenges. Instead, this study developed a custom LCZ data to map key Korean cities using a multi-scale convolutional neural network. Results demonstrated that using a novel, custom LCZ data with deep learning can generate more accurate LCZ map results compared to conventional community-based LCZ mapping with machine learning as well as transfer learning of the global So2Sat dataset.