Abstract:Large pretrained language models such as BERT suffer from slow inference and high memory usage, due to their huge size. Recent approaches to compressing BERT rely on iterative pruning and knowledge distillation, which, however, are often too complicated and computationally intensive. This paper proposes a novel semi-structured one-shot pruning method for BERT, called $\textit{Permutation and Grouping for BERT}$ (PGB), which achieves high compression efficiency and sparsity while preserving accuracy. To this end, PGB identifies important groups of individual weights by permutation and prunes all other weights as a structure in both multi-head attention and feed-forward layers. Furthermore, if no important group is formed in a particular layer, PGB drops the entire layer to produce an even more compact model. Our experimental results on BERT$_{\text{BASE}}$ demonstrate that PGB outperforms the state-of-the-art structured pruning methods in terms of computational cost and accuracy preservation.
Abstract:The stability-plasticity dilemma is a major challenge in continual learning, as it involves balancing the conflicting objectives of maintaining performance on previous tasks while learning new tasks. In this paper, we propose the recall-oriented continual learning framework to address this challenge. Inspired by the human brain's ability to separate the mechanisms responsible for stability and plasticity, our framework consists of a two-level architecture where an inference network effectively acquires new knowledge and a generative network recalls past knowledge when necessary. In particular, to maximize the stability of past knowledge, we investigate the complexity of knowledge depending on different representations, and thereby introducing generative adversarial meta-model (GAMM) that incrementally learns task-specific parameters instead of input data samples of the task. Through our experiments, we show that our framework not only effectively learns new knowledge without any disruption but also achieves high stability of previous knowledge in both task-aware and task-agnostic learning scenarios. Our code is available at: https://github.com/bigdata-inha/recall-oriented-cl-framework.
Abstract:Data-free knowledge distillation (DFKD) aims to distill pretrained knowledge to a student model with the help of a generator without using original data. In such data-free scenarios, achieving stable performance of DFKD is essential due to the unavailability of validation data. Unfortunately, this paper has discovered that existing DFKD methods are quite sensitive to different teacher models, occasionally showing catastrophic failures of distillation, even when using well-trained teacher models. Our observation is that the generator in DFKD is not always guaranteed to produce precise yet diverse samples using the existing representative strategy of minimizing both class-prior and adversarial losses. Through our empirical study, we focus on the fact that class-prior not only decreases the diversity of generated samples, but also cannot completely address the problem of generating unexpectedly low-quality samples depending on teacher models. In this paper, we propose the teacher-agnostic data-free knowledge distillation (TA-DFKD) method, with the goal of more robust and stable performance regardless of teacher models. Our basic idea is to assign the teacher model a lenient expert role for evaluating samples, rather than a strict supervisor that enforces its class-prior on the generator. Specifically, we design a sample selection approach that takes only clean samples verified by the teacher model without imposing restrictions on the power of generating diverse samples. Through extensive experiments, we show that our method successfully achieves both robustness and training stability across various teacher models, while outperforming the existing DFKD methods.
Abstract:This paper introduces and studies zero-base generalized few-shot learning (zero-base GFSL), which is an extreme yet practical version of few-shot learning problem. Motivated by the cases where base data is not available due to privacy or ethical issues, the goal of zero-base GFSL is to newly incorporate the knowledge of few samples of novel classes into a pretrained model without any samples of base classes. According to our analysis, we discover the fact that both mean and variance of the weight distribution of novel classes are not properly established, compared to those of base classes. The existing GFSL methods attempt to make the weight norms balanced, which we find helps only the variance part, but discard the importance of mean of weights particularly for novel classes, leading to the limited performance in the GFSL problem even with base data. In this paper, we overcome this limitation by proposing a simple yet effective normalization method that can effectively control both mean and variance of the weight distribution of novel classes without using any base samples and thereby achieve a satisfactory performance on both novel and base classes. Our experimental results somewhat surprisingly show that the proposed zero-base GFSL method that does not utilize any base samples even outperforms the existing GFSL methods that make the best use of base data. Our implementation is available at: https://github.com/bigdata-inha/Zero-Base-GFSL.
Abstract:In spite of the great success of deep learning technologies, training and delivery of a practically serviceable model is still a highly time-consuming process. Furthermore, a resulting model is usually too generic and heavyweight, and hence essentially goes through another expensive model compression phase to fit in a resource-limited device like embedded systems. Inspired by the fact that a machine learning task specifically requested by mobile users is often much simpler than it is supported by a massive generic model, this paper proposes a framework, called Pool of Experts (PoE), that instantly builds a lightweight and task-specific model without any training process. For a realtime model querying service, PoE first extracts a pool of primitive components, called experts, from a well-trained and sufficiently generic network by exploiting a novel conditional knowledge distillation method, and then performs our train-free knowledge consolidation to quickly combine necessary experts into a lightweight network for a target task. Thanks to this train-free property, in our thorough empirical study, PoE can build a fairly accurate yet compact model in a realtime manner, whereas it takes a few minutes per query for the other training methods to achieve a similar level of the accuracy.
Abstract:Continual learning has been a major problem in the deep learning community, where the main challenge is how to effectively learn a series of newly arriving tasks without forgetting the knowledge of previous tasks. Initiated by Learning without Forgetting (LwF), many of the existing works report that knowledge distillation is effective to preserve the previous knowledge, and hence they commonly use a soft label for the old task, namely a knowledge distillation (KD) loss, together with a class label for the new task, namely a cross entropy (CE) loss, to form a composite loss for a single neural network. However, this approach suffers from learning the knowledge by a CE loss as a KD loss often more strongly influences the objective function when they are in a competitive situation within a single network. This could be a critical problem particularly in a class incremental scenario, where the knowledge across tasks as well as within the new task, both of which can only be acquired by a CE loss, is essentially learned due to the existence of a unified classifier. In this paper, we propose a novel continual learning method, called Split-and-Bridge, which can successfully address the above problem by partially splitting a neural network into two partitions for training the new task separated from the old task and re-connecting them for learning the knowledge across tasks. In our thorough experimental analysis, our Split-and-Bridge method outperforms the state-of-the-art competitors in KD-based continual learning.