IDEAT
Abstract:Experiments studying mainly proximity effect are presented. Pink noise and music were used as stimuli and a combo guitar amplifier as source to test several microphones: omnidirectional and directional. We plot in-axis levels and spectral balances as functions of x, the distance to the source. Proximity effect was found for omnidirectional microphones. In-axis level curves show that 1/x law seems poorly valid. Spectral balance evolutions depend on microphones and moreover on stimuli: bigger decreases of low frequencies with pink noise; larger increases of other frequencies with music. For a naked loudspeaker, we found similar in-axis level curves under and above the cut-off frequency and propose an explanation. Listening equalized music recordings will help to demonstrate proximity effect for tested microphones.Paper 7106 presented at the 122th Convention of the Audio Engineering Society, Wien, 2007
Abstract:We will present a first step in design of a broadband physical model for microphones. Within the proposed model, classical directivity patterns (omnidirectional, bidirectional and cardioids family) are refound as limit cases: monochromatic excitation, low frequency and far-field approximation. Monophonic pieces of music are used as sources for the model so we can listen the simulation of the associated recorded sound field in realtime thanks to a Max/MSP application. Listening and subbands analysis show that the directivity is a function of frequential subband and source location. This model also exhibits an interesting proximity effect. Audio demonstrations will be given.Paper 6638 presented at the 120th Convention of the Audio Engineering Society, Paris, 2006