Abstract:In this paper, we propose an image matting framework called Salient Image Matting to estimate the per-pixel opacity value of the most salient foreground in an image. To deal with a large amount of semantic diversity in images, a trimap is conventionally required as it provides important guidance about object semantics to the matting process. However, creating a good trimap is often expensive and timeconsuming. The SIM framework simultaneously deals with the challenge of learning a wide range of semantics and salient object types in a fully automatic and an end to end manner. Specifically, our framework is able to produce accurate alpha mattes for a wide range of foreground objects and cases where the foreground class, such as human, appears in a very different context than the train data directly from an RGB input. This is done by employing a salient object detection model to produce a trimap of the most salient object in the image in order to guide the matting model about higher-level object semantics. Our framework leverages large amounts of coarse annotations coupled with a heuristic trimap generation scheme to train the trimap prediction network so it can produce trimaps for arbitrary foregrounds. Moreover, we introduce a multi-scale fusion architecture for the task of matting to better capture finer, low-level opacity semantics. With high-level guidance provided by the trimap network, our framework requires only a fraction of expensive matting data as compared to other automatic methods while being able to produce alpha mattes for a diverse range of inputs. We demonstrate our framework on a range of diverse images and experimental results show our framework compares favourably against state of art matting methods without the need for a trimap