Abstract:In this work we present a technique to select the best robot for accomplishing a task assuming that the map of the environment is known in advance. To do so, capabilities of the robots are listed and the environments where they can be used are mapped. There are five robots that included for doing the tasks. They are the robotic lizard, half-humanoid, robotic snake, biped and quadruped. Each of these robots are capable of performing certain activities and also they have their own limitations. The process of considering the robot performances and acting based on their limitations is the focus of this work. The wavefront algorithm is used to find the nature of terrain. Based on the terrain a suitable robot is selected from the list of five robots by the wavefront algorithm. Using this robot the mission is accomplished.
Abstract:Legged robots are being used to explore rough terrains as they are capable of traversing gaps and obstacles. In this paper, a new mechanism is designed to replicate a robotic lizard using integrated five-bar mechanisms. There are two five bar mechanisms from which two more are formed by connecting the links in a particular order. The legs are attached to the links of the five bar mechanism such that, when the mechanism is actuated, they move the robot forward. Position analysis using vector loop approach has been done for the mechanism. A prototype has been built and controlled using servo motors to verify the robotic lizard mechanism.