Abstract:This paper explores the application of active learning strategies to adaptively learn Sobol indices for global sensitivity analysis. We demonstrate that active learning for Sobol indices poses unique challenges due to the definition of the Sobol index as a ratio of variances estimated from Gaussian process surrogates. Consequently, learning strategies must either focus on convergence in the numerator or the denominator of this ratio. However, rapid convergence in either one does not guarantee convergence in the Sobol index. We propose a novel strategy for active learning that focuses on resolving the main effects of the Gaussian process (associated with the numerator of the Sobol index) and compare this with existing strategies based on convergence in the total variance (the denominator of the Sobol index). The new strategy, implemented through a new learning function termed the MUSIC (minimize uncertainty in Sobol index convergence), generally converges in Sobol index error more rapidly than the existing strategies based on the Expected Improvement for Global Fit (EIGF) and the Variance Improvement for Global Fit (VIGF). Both strategies are compared with simple sequential random sampling and the MUSIC learning function generally converges most rapidly for low-dimensional problems. However, for high-dimensional problems, the performance is comparable to random sampling. The new learning strategy is demonstrated for a practical case of adaptive experimental design for large-scale Boundary Layer Wind Tunnel experiments.
Abstract:Numerical simulations of high energy-density experiments require equation of state (EOS) models that relate a material's thermodynamic state variables -- specifically pressure, volume/density, energy, and temperature. EOS models are typically constructed using a semi-empirical parametric methodology, which assumes a physics-informed functional form with many tunable parameters calibrated using experimental/simulation data. Since there are inherent uncertainties in the calibration data (parametric uncertainty) and the assumed functional EOS form (model uncertainty), it is essential to perform uncertainty quantification (UQ) to improve confidence in the EOS predictions. Model uncertainty is challenging for UQ studies since it requires exploring the space of all possible physically consistent functional forms. Thus, it is often neglected in favor of parametric uncertainty, which is easier to quantify without violating thermodynamic laws. This work presents a data-driven machine learning approach to constructing EOS models that naturally captures model uncertainty while satisfying the necessary thermodynamic consistency and stability constraints. We propose a novel framework based on physics-informed Gaussian process regression (GPR) that automatically captures total uncertainty in the EOS and can be jointly trained on both simulation and experimental data sources. A GPR model for the shock Hugoniot is derived and its uncertainties are quantified using the proposed framework. We apply the proposed model to learn the EOS for the diamond solid state of carbon, using both density functional theory data and experimental shock Hugoniot data to train the model and show that the prediction uncertainty reduces by considering the thermodynamic constraints.