Abstract:With a particular focus on Scipy's minimize function the eclipse mapping method is thoroughly researched and implemented utilizing Python and essential libraries. Many optimization techniques are used, including Sequential Least Squares Programming (SLSQP), Nelder-Mead, and Conjugate Gradient (CG). However, for the purpose of examining photometric light curves these methods seek to solve the maximum entropy equation under a chi-squared constraint. Therefore, these techniques are first evaluated on two-dimensional Gaussian data without a chi-squared restriction, and then they are used to map the accretion disc and uncover the Gaussian structure of the Cataclysmic Variable KIC 201325107. Critical analysis is performed on the code structure to find possible faults and design problems. Additionally, the analysis shows how several factors impacting computing time and image quality are included including the variance in Gaussian weighting, disc image resolution, number of data points in the light curve, and degree of constraint.
Abstract:The aim of this study is to teach an algorithm how to recognize different types of music. Users will submit songs for analysis. Since the algorithm hasn't heard these songs before, it needs to figure out what makes each song unique. It does this by breaking down the songs into different parts and studying things like rhythm, melody, and tone via supervised learning because the program learns from examples that are already labelled. One important thing to consider when classifying music is its genre, which can be quite complex. To ensure accuracy, we use five different algorithms, each working independently, to analyze the songs. This helps us get a more complete understanding of each song's characteristics. Therefore, our goal is to correctly identify the genre of each submitted song. Once the analysis is done, the results are presented using a graphing tool, making it easy for users to understand and provide feedback.