Abstract:Modern deep neural networks (DNNs) consist of millions of parameters, necessitating high-performance computing during training and inference. Pruning is one solution that significantly reduces the space and time complexities of DNNs. Traditional pruning methods that are applied post-training focus on streamlining inference, but there are recent efforts to leverage sparsity early on by pruning before training. Pruning methods, such as iterative magnitude-based pruning (IMP) achieve up to a 90% parameter reduction while retaining accuracy comparable to the original model. However, this leads to impractical runtime as it relies on multiple train-prune-reset cycles to identify and eliminate redundant parameters. In contrast, training agnostic early pruning methods, such as SNIP and SynFlow offer fast pruning but fall short of the accuracy achieved by IMP at high sparsities. To bridge this gap, we present Dual Gradient-Based Rapid Iterative Pruning (DRIVE), which leverages dense training for initial epochs to counteract the randomness inherent at the initialization. Subsequently, it employs a unique dual gradient-based metric for parameter ranking. It has been experimentally demonstrated for VGG and ResNet architectures on CIFAR-10/100 and Tiny ImageNet, and ResNet on ImageNet that DRIVE consistently has superior performance over other training-agnostic early pruning methods in accuracy. Notably, DRIVE is 43$\times$ to 869$\times$ faster than IMP for pruning.
Abstract:Efficient on-device Convolutional Neural Network (CNN) training in resource-constrained mobile and edge environments is an open challenge. Backpropagation is the standard approach adopted, but it is GPU memory intensive due to its strong inter-layer dependencies that demand intermediate activations across the entire CNN model to be retained in GPU memory. This necessitates smaller batch sizes to make training possible within the available GPU memory budget, but in turn, results in substantially high and impractical training time. We introduce NeuroFlux, a novel CNN training system tailored for memory-constrained scenarios. We develop two novel opportunities: firstly, adaptive auxiliary networks that employ a variable number of filters to reduce GPU memory usage, and secondly, block-specific adaptive batch sizes, which not only cater to the GPU memory constraints but also accelerate the training process. NeuroFlux segments a CNN into blocks based on GPU memory usage and further attaches an auxiliary network to each layer in these blocks. This disrupts the typical layer dependencies under a new training paradigm - $\textit{`adaptive local learning'}$. Moreover, NeuroFlux adeptly caches intermediate activations, eliminating redundant forward passes over previously trained blocks, further accelerating the training process. The results are twofold when compared to Backpropagation: on various hardware platforms, NeuroFlux demonstrates training speed-ups of 2.3$\times$ to 6.1$\times$ under stringent GPU memory budgets, and NeuroFlux generates streamlined models that have 10.9$\times$ to 29.4$\times$ fewer parameters.