Abstract:We present a new approach to the solution of decision problems formulated as influence diagrams. The approach converts the influence diagram into a simpler structure, the LImited Memory Influence Diagram (LIMID), where only the requisite information for the computation of optimal policies is depicted. Because the requisite information is explicitly represented in the diagram, the evaluation procedure can take advantage of it. In this paper we show how to convert an influence diagram to a LIMID and describe the procedure for finding an optimal strategy. Our approach can yield significant savings of memory and computational time when compared to traditional methods.
Abstract:In this paper we compare three different architectures for the evaluation of influence diagrams: HUGIN, Shafer-Shenoy, and Lazy Evaluation architecture. The computational complexity of the architectures are compared on the LImited Memory Influence Diagram (LIMID): a diagram where only the requiste information for the computation of the optimal policies are depicted. Because the requsite information is explicitly represented in the LIMID the evaluation can take advantage of it, and significant savings in computational can be obtained. In this paper we show how the obtained savings is considerably increased when the computations performed on the LIMID is according to the Lazy Evaluation scheme.