Abstract:The integration of foundation models (FMs) into robotics has accelerated real-world deployment, while introducing new safety challenges arising from open-ended semantic reasoning and embodied physical action. These challenges require safety notions beyond physical constraint satisfaction. In this paper, we characterize FM-enabled robot safety along three dimensions: action safety (physical feasibility and constraint compliance), decision safety (semantic and contextual appropriateness), and human-centered safety (conformance to human intent, norms, and expectations). We argue that existing approaches, including static verification, monolithic controllers, and end-to-end learned policies, are insufficient in settings where tasks, environments, and human expectations are open-ended, long-tailed, and subject to adaptation over time. To address this gap, we propose modular safety guardrails, consisting of monitoring (evaluation) and intervention layers, as an architectural foundation for comprehensive safety across the autonomy stack. Beyond modularity, we highlight possible cross-layer co-design opportunities through representation alignment and conservatism allocation to enable faster, less conservative, and more effective safety enforcement. We call on the community to explore richer guardrail modules and principled co-design strategies to advance safe real-world physical AI deployment.
Abstract:Current robotic manipulators require fast and efficient motion-planning algorithms to operate in cluttered environments. State-of-the-art sampling-based motion planners struggle to scale to high-dimensional configuration spaces and are inefficient in complex environments. This inefficiency arises because these planners utilize either uniform or hand-crafted sampling heuristics within the configuration space. To address these challenges, we present the Spatial-informed Motion Planning Network (SIMPNet). SIMPNet consists of a stochastic graph neural network (GNN)-based sampling heuristic for informed sampling within the configuration space. The sampling heuristic of SIMPNet encodes the workspace embedding into the configuration space through a cross-attention mechanism. It encodes the manipulator's kinematic structure into a graph, which is used to generate informed samples within the framework of sampling-based motion planning algorithms. We have evaluated the performance of SIMPNet using a UR5e robotic manipulator operating within simple and complex workspaces, comparing it against baseline state-of-the-art motion planners. The evaluation results show the effectiveness and advantages of the proposed planner compared to the baseline planners.