Abstract:Reliable wind turbine power prediction is imperative to the planning, scheduling and control of wind energy farms for stable power production. In recent years Machine Learning (ML) methods have been successfully applied in a wide range of domains, including renewable energy. However, due to the challenging nature of power prediction in wind farms, current models are far short of the accuracy required by industry. In this paper, we deploy a composite ML approach--namely a hybrid neuro-evolutionary algorithm--for accurate forecasting of the power output in wind-turbine farms. We use historical data in the supervisory control and data acquisition (SCADA) systems as input to estimate the power output from an onshore wind farm in Sweden. At the beginning stage, the k-means clustering method and an Autoencoder are employed, respectively, to detect and filter noise in the SCADA measurements. Next, with the prior knowledge that the underlying wind patterns are highly non-linear and diverse, we combine a self-adaptive differential evolution (SaDE) algorithm as a hyper-parameter optimizer, and a recurrent neural network (RNN) called Long Short-term memory (LSTM) to model the power curve of a wind turbine in a farm. Two short time forecasting horizons, including ten-minutes ahead and one-hour ahead, are considered in our experiments. We show that our approach outperforms its counterparts.
Abstract:Accurate short-term wind speed forecasting is essential for large-scale integration of wind power generation. However, the seasonal and stochastic characteristics of wind speed make forecasting a challenging task. This study uses a new hybrid evolutionary approach that uses a popular evolutionary search algorithm, CMA-ES, to tune the hyper-parameters of two Long short-term memory(LSTM) ANN models for wind prediction. The proposed hybrid approach is trained on data gathered from an offshore wind turbine installed in a Swedish wind farm located in the Baltic Sea. Two forecasting horizons including ten-minutes ahead (absolute short term) and one-hour ahead (short term) are considered in our experiments. Our experimental results indicate that the new approach is superior to five other applied machine learning models, i.e., polynomial neural network (PNN), feed-forward neural network (FNN), nonlinear autoregressive neural network (NAR) and adaptive neuro-fuzzy inference system (ANFIS), as measured by five performance criteria.