Abstract:Explainable AI (XAI) has a counterpart in analytical modeling which we refer to as model explainability. We tackle the issue of model explainability in the context of prediction models. We analyze a dataset of loans from a credit card company and apply three stages: execute and compare four different prediction methods, apply the best known explainability techniques in the current literature to the model training sets to identify feature importance (FI) (static case), and finally to cross-check whether the FI set holds up under what if prediction scenarios for continuous and categorical variables (dynamic case). We found inconsistency in FI identification between the static and dynamic cases. We summarize the state of the art in model explainability and suggest further research to advance the field.
Abstract:A high-velocity paradigm shift towards Explainable Artificial Intelligence (XAI) has emerged in recent years. Highly complex Machine Learning (ML) models have flourished in many tasks of intelligence, and the questions have started to shift away from traditional metrics of validity towards something deeper: What is this model telling me about my data, and how is it arriving at these conclusions? Inconsistencies between XAI and modeling techniques can have the undesirable effect of casting doubt upon the efficacy of these explainability approaches. To address these problems, we propose a systematic, perturbation-based analysis against a popular, model-agnostic method in XAI, SHapley Additive exPlanations (Shap). We devise algorithms to generate relative feature importance in settings of dynamic inference amongst a suite of popular machine learning and deep learning methods, and metrics that allow us to quantify how well explanations generated under the static case hold. We propose a taxonomy for feature importance methodology, measure alignment, and observe quantifiable similarity amongst explanation models across several datasets.