Abstract:Modern lens designs are capable of resolving >10 gigapixels, while advances in camera frame-rate and hyperspectral imaging have made Terapixel/s data acquisition a real possibility. The main bottlenecks preventing such high data-rate systems are power consumption and data storage. In this work, we show that analog photonic encoders could address this challenge, enabling high-speed image compression using orders-of-magnitude lower power than digital electronics. Our approach relies on a silicon-photonics front-end to compress raw image data, foregoing energy-intensive image conditioning and reducing data storage requirements. The compression scheme uses a passive disordered photonic structure to perform kernel-type random projections of the raw image data with minimal power consumption and low latency. A back-end neural network can then reconstruct the original images with structural similarity exceeding 90%. This scheme has the potential to process Terapixel/s data streams using less than 100 fJ/pixel, providing a path to ultra-high-resolution data and image acquisition systems.
Abstract:A blind compressive sensing algorithm is proposed to reconstruct hyperspectral images from spectrally-compressed measurements.The wavelength-dependent data are coded and then superposed, mapping the three-dimensional hyperspectral datacube to a two-dimensional image. The inversion algorithm learns a dictionary {\em in situ} from the measurements via global-local shrinkage priors. By using RGB images as side information of the compressive sensing system, the proposed approach is extended to learn a coupled dictionary from the joint dataset of the compressed measurements and the corresponding RGB images, to improve reconstruction quality. A prototype camera is built using a liquid-crystal-on-silicon modulator. Experimental reconstructions of hyperspectral datacubes from both simulated and real compressed measurements demonstrate the efficacy of the proposed inversion algorithm, the feasibility of the camera and the benefit of side information.