Abstract:Many nuclear safety applications need fast, portable, and accurate imagers to better locate radiation sources. The Rotating Scatter Mask (RSM) system is an emerging device with the potential to meet these needs. The main challenge is the under-determined nature of the data acquisition process: the dimension of the measured signal is far less than the dimension of the image to be reconstructed. To address this challenge, this work aims to fuse model-based sparsity-promoting regularization and a data-driven deep neural network denoising image prior to perform image reconstruction. An efficient algorithm is developed and produces superior reconstructions relative to current approaches.
Abstract:The task of mixture proportion estimation (MPE) is to estimate the weight of a component distribution in a mixture, given observations from both the component and mixture. Previous work on MPE adopts the irreducibility assumption, which ensures identifiablity of the mixture proportion. In this paper, we propose a more general sufficient condition that accommodates several settings of interest where irreducibility does not hold. We further present a resampling-based meta-algorithm that takes any existing MPE algorithm designed to work under irreducibility and adapts it to work under our more general condition. Our approach empirically exhibits improved estimation performance relative to baseline methods and to a recently proposed regrouping-based algorithm.