Abstract:We propose a new framework to solve online optimization and learning problems in unknown and uncertain dynamical environments. This framework enables us to simultaneously learn the uncertain dynamical environment while making online decisions in a quantifiably robust manner. The main technical approach relies on the theory of distributional robust optimization that leverages adaptive probabilistic ambiguity sets. However, as defined, the ambiguity set usually leads to online intractable problems, and the first part of our work is directed to find reformulations in the form of online convex problems for two sub-classes of objective functions. To solve the resulting problems in the proposed framework, we further introduce an online version of the Nesterov accelerated-gradient algorithm. We determine how the proposed solution system achieves a probabilistic regret bound under certain conditions. Two applications illustrate the applicability of the proposed framework.