Abstract:With the membership function being strictly positive, the conventional fuzzy c-means clustering method sometimes causes imbalanced influence when clusters of vastly different sizes exist. That is, an outstandingly large cluster drags to its center all the other clusters, however far they are separated. To solve this problem, we propose a hybrid fuzzy-crisp clustering algorithm based on a target function combining linear and quadratic terms of the membership function. In this algorithm, the membership of a data point to a cluster is automatically set to exactly zero if the data point is ``sufficiently'' far from the cluster center. In this paper, we present a new algorithm for hybrid fuzzy-crisp clustering along with its geometric interpretation. The algorithm is tested on twenty simulated data generated and five real-world datasets from the UCI repository and compared with conventional fuzzy and crisp clustering methods. The proposed algorithm is demonstrated to outperform the conventional methods on imbalanced datasets and can be competitive on more balanced datasets.
Abstract:National Health and Nutritional Status Survey (NHANSS) is conducted annually by the Ministry of Health in Negara Brunei Darussalam to assess the population health and nutritional patterns and characteristics. The main aim of this study was to discover meaningful patterns (groups) from the obese sample of NHANSS data by applying data reduction and interpretation techniques. The mixed nature of the variables (qualitative and quantitative) in the data set added novelty to the study. Accordingly, the Categorical Principal Component (CATPCA) technique was chosen to interpret the meaningful results. The relationships between obesity and the lifestyle factors like demography, socioeconomic status, physical activity, dietary behavior, history of blood pressure, diabetes, etc., were determined based on the principal components generated by CATPCA. The results were validated with the help of the split method technique to counter verify the authenticity of the generated groups. Based on the analysis and results, two subgroups were found in the data set, and the salient features of these subgroups have been reported. These results can be proposed for the betterment of the healthcare industry.
Abstract:Human activity discovery aims to distinguish the activities performed by humans, without any prior information of what defines each activity. Most methods presented in human activity recognition are supervised, where there are labeled inputs to train the system. In reality, it is difficult to label data because of its huge volume and the variety of activities performed by humans. In this paper, a novel unsupervised approach is proposed to perform human activity discovery in 3D skeleton sequences. First, important frames are selected based on kinetic energy. Next, the displacement of joints, set of statistical, angles, and orientation features are extracted to represent the activities information. Since not all extracted features have useful information, the dimension of features is reduced using PCA. Most human activity discovery proposed are not fully unsupervised. They use pre-segmented videos before categorizing activities. To deal with this, we used the fragmented sliding time window method to segment the time series of activities with some overlapping. Then, activities are discovered by a novel hybrid particle swarm optimization with a Gaussian mutation algorithm to avoid getting stuck in the local optimum. Finally, k-means is applied to the outcome centroids to overcome the slow rate of PSO. Experiments on three datasets have been presented and the results show the proposed method has superior performance in discovering activities in all evaluation parameters compared to the other state-of-the-art methods and has increased accuracy of at least 4 % on average. The code is available here: https://github.com/parhamhadikhani/Human-Activity-Discovery-HPGMK