Abstract:Today's distributed and pervasive computing addresses large-scale cyber-physical ecosystems, characterised by dense and large networks of devices capable of computation, communication and interaction with the environment and people. While most research focusses on treating these systems as "composites" (i.e., heterogeneous functional complexes), recent developments in fields such as self-organising systems and swarm robotics have opened up a complementary perspective: treating systems as "collectives" (i.e., uniform, collaborative, and self-organising groups of entities). This article explores the motivations, state of the art, and implications of this "collective computing paradigm" in software engineering, discusses its peculiar challenges, and outlines a path for future research, touching on aspects such as macroprogramming, collective intelligence, self-adaptive middleware, learning, synthesis, and experimentation of collective behaviour.
Abstract:A recurrent task in coordinated systems is managing (estimating, predicting, or controlling) signals that vary in space, such as distributed sensed data or computation outcomes. Especially in large-scale settings, the problem can be addressed through decentralised and situated computing systems: nodes can locally sense, process, and act upon signals, and coordinate with neighbours to implement collective strategies. Accordingly, in this work we devise distributed coordination strategies for the estimation of a spatial phenomenon through collaborative adaptive sampling. Our design is based on the idea of dynamically partitioning space into regions that compete and grow/shrink to provide accurate aggregate sampling. Such regions hence define a sort of virtualised space that is "fluid", since its structure adapts in response to pressure forces exerted by the underlying phenomenon. We provide an adaptive sampling algorithm in the field-based coordination framework, and prove it is self-stabilising and locally optimal. Finally, we verify by simulation that the proposed algorithm effectively carries out a spatially adaptive sampling while maintaining a tuneable trade-off between accuracy and efficiency.