Abstract:Adaptive video streaming is a key enabler for optimising the delivery of offline encoded video content. The research focus to date has been on optimisation, based solely on rate-quality curves. This paper adds an additional dimension, the energy expenditure, and explores construction of bitrate ladders based on decoding energy-quality curves rather than the conventional rate-quality curves. Pareto fronts are extracted from the rate-quality and energy-quality spaces to select optimal points. Bitrate ladders are constructed from these points using conventional rate-based rules together with a novel quality-based approach. Evaluation on a subset of YouTube-UGC videos encoded with x.265 shows that the energy-quality ladders reduce energy requirements by 28-31% on average at the cost of slightly higher bitrates. The results indicate that optimising based on energy-quality curves rather than rate-quality curves and using quality levels to create the rungs could potentially improve energy efficiency for a comparable quality of experience.
Abstract:The environmental impact of video streaming services has been discussed as part of the strategies towards sustainable information and communication technologies. A first step towards that is the energy profiling and assessment of energy consumption of existing video technologies. This paper presents a comprehensive study of power measurement techniques in video compression, comparing the use of hardware and software power meters. An experimental methodology to ensure reliability of measurements is introduced. Key findings demonstrate the high correlation of hardware and software based energy measurements for two video codecs across different spatial and temporal resolutions at a lower computational overhead.