Abstract:In the current data-intensive era, big data has become a significant asset for Artificial Intelligence (AI), serving as a foundation for developing data-driven models and providing insight into various unknown fields. This study navigates through the challenges of data uncertainties, storage limitations, and predictive data-driven modeling using big data. We utilize Robust Principal Component Analysis (RPCA) for effective noise reduction and outlier elimination, and Optimal Sensor Placement (OSP) for efficient data compression and storage. The proposed OSP technique enables data compression without substantial information loss while simultaneously reducing storage needs. While RPCA offers an enhanced alternative to traditional Principal Component Analysis (PCA) for high-dimensional data management, the scope of this work extends its utilization, focusing on robust, data-driven modeling applicable to huge data sets in real-time. For that purpose, Long Short-Term Memory (LSTM) networks, a type of recurrent neural network, are applied to model and predict data based on a low-dimensional subset obtained from OSP, leading to a crucial acceleration of the training phase. LSTMs are feasible for capturing long-term dependencies in time series data, making them particularly suited for predicting the future states of physical systems on historical data. All the presented algorithms are not only theorized but also simulated and validated using real thermal imaging data mapping a ship's engine.
Abstract:Autonomous surface vessels (ASVs) play an increasingly important role in the safety and sustainability of open sea operations. Since most maritime accidents are related to human failure, intelligent algorithms for autonomous collision avoidance and path following can drastically reduce the risk in the maritime sector. A DT is a virtual representative of a real physical system and can enhance the situational awareness (SITAW) of such an ASV to generate optimal decisions. This work builds on an existing DT framework for ASVs and demonstrates foundations for enabling predictive, prescriptive, and autonomous capabilities. In this context, sophisticated target tracking approaches are crucial for estimating and predicting the position and motion of other dynamic objects. The applied tracking method is enabled by real-time automatic identification system (AIS) data and synthetic light detection and ranging (Lidar) measurements. To guarantee safety during autonomous operations, we applied a predictive safety filter, based on the concept of nonlinear model predictive control (NMPC). The approaches are implemented into a DT built with the Unity game engine. As a result, this work demonstrates the potential of a DT capable of making predictions, playing through various what-if scenarios, and providing optimal control decisions according to its enhanced SITAW.
Abstract:Many autonomous systems face safety challenges, requiring robust closed-loop control to handle physical limitations and safety constraints. Real-world systems, like autonomous ships, encounter nonlinear dynamics and environmental disturbances. Reinforcement learning is increasingly used to adapt to complex scenarios, but standard frameworks ensuring safety and stability are lacking. Predictive Safety Filters (PSF) offer a promising solution, ensuring constraint satisfaction in learning-based control without explicit constraint handling. This modular approach allows using arbitrary control policies, with the safety filter optimizing proposed actions to meet physical and safety constraints. We apply this approach to marine navigation, combining RL with PSF on a simulated Cybership II model. The RL agent is trained on path following and collision avpodance, while the PSF monitors and modifies control actions for safety. Results demonstrate the PSF's effectiveness in maintaining safety without hindering the RL agent's learning rate and performance, evaluated against a standard RL agent without PSF.