Abstract:Automatic bill classification is an attractive task with many potential applications such as automated detection and counting in images or videos. To address this purpose we present a Deep Learning Model to classify Chilean Banknotes, because of its successful results in image processing applications. For optimal performance of the proposed model, data augmentation techniques are introduced due to the limited number of image samples. Positive results were achieved in this work, verifying that it could be a stating point to be extended to more complex applications.
Abstract:We study the model of projective simulation (PS), a novel approach to artificial intelligence based on stochastic processing of episodic memory which was recently introduced [H.J. Briegel and G. De las Cuevas. Sci. Rep. 2, 400, (2012)]. Here we provide a detailed analysis of the model and examine its performance, including its achievable efficiency, its learning times and the way both properties scale with the problems' dimension. In addition, we situate the PS agent in different learning scenarios, and study its learning abilities. A variety of new scenarios are being considered, thereby demonstrating the model's flexibility. Furthermore, to put the PS scheme in context, we compare its performance with those of Q-learning and learning classifier systems, two popular models in the field of reinforcement learning. It is shown that PS is a competitive artificial intelligence model of unique properties and strengths.