Abstract:Improving diesel engine efficiency and emission reduction have been critical research topics. Recent government regulations have shifted this focus to another important area related to engine health and performance monitoring. Although the advancements in the use of deep learning methods for system monitoring have shown promising results in this direction, designing efficient methods suitable for field systems remains an open research challenge. The objective of this study is to develop a computationally efficient neural network-based approach for identifying unknown parameters of a mean value diesel engine model to facilitate physics-based health monitoring and maintenance forecasting. We propose a hybrid method combining physics informed neural networks, PINNs, and a deep neural operator, DeepONet to predict unknown parameters and gas flow dynamics in a diesel engine. The operator network predicts independent actuator dynamics learnt through offline training, thereby reducing the PINNs online computational cost. To address PINNs need for retraining with changing input scenarios, we propose two transfer learning (TL) strategies. The first strategy involves multi-stage transfer learning for parameter identification. While this method is computationally efficient as compared to online PINN training, improvements are required to meet field requirements. The second TL strategy focuses solely on training the output weights and biases of a subset of multi-head networks pretrained on a larger dataset, substantially reducing computation time during online prediction. We also evaluate our model for epistemic and aleatoric uncertainty by incorporating dropout in pretrained networks and Gaussian noise in the training dataset. This strategy offers a tailored, computationally inexpensive, and physics-based approach for parameter identification in diesel engine sub systems.
Abstract:We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum $\mathcal L_2$ relative error observed was approximately $6.5\%$. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the $(\mu + 2\sigma)$ boundary was found to be $12\%$. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.