Abstract:Novel view synthesis (NVS) has advanced with generative modeling, enabling photorealistic image generation. In few-shot NVS, where only a few input views are available, existing methods often assume equal importance for all input views relative to the target, leading to suboptimal results. We address this limitation by introducing a camera-weighting mechanism that adjusts the importance of source views based on their relevance to the target. We propose two approaches: a deterministic weighting scheme leveraging geometric properties like Euclidean distance and angular differences, and a cross-attention-based learning scheme that optimizes view weighting. Additionally, models can be further trained with our camera-weighting scheme to refine their understanding of view relevance and enhance synthesis quality. This mechanism is adaptable and can be integrated into various NVS algorithms, improving their ability to synthesize high-quality novel views. Our results demonstrate that adaptive view weighting enhances accuracy and realism, offering a promising direction for improving NVS.
Abstract:Deep learners tend to perform well when trained under the closed set assumption but struggle when deployed under open set conditions. This motivates the field of Open Set Recognition in which we seek to give deep learners the ability to recognize whether a data sample belongs to the known classes trained on or comes from the surrounding infinite world. Existing open set recognition methods typically rely upon a single function for the dual task of distinguishing between knowns and unknowns as well as making known class distinction. This dual process leaves performance on the table as the function is not specialized for either task. In this work, we introduce Cascading Unknown Detection with Known Classification (Cas-DC), where we instead learn specialized functions in a cascading fashion for both known/unknown detection and fine class classification amongst the world of knowns. Our experiments and analysis demonstrate that Cas-DC handily outperforms modern methods in open set recognition when compared using AUROC scores and correct classification rate at various true positive rates.




Abstract:Continual learning seeks to enable deep learners to train on a series of tasks of unknown length without suffering from the catastrophic forgetting of previous tasks. One effective solution is replay, which involves storing few previous experiences in memory and replaying them when learning the current task. However, there is still room for improvement when it comes to selecting the most informative samples for storage and determining the optimal number of samples to be stored. This study aims to address these issues with a novel comparison of the commonly used reservoir sampling to various alternative population strategies and providing a novel detailed analysis of how to find the optimal number of stored samples.