Abstract:Foundation models are typically trained at a fixed computational capacity, while real-world applications require deployment across platforms with different resource constraints. Current approaches usually rely on training families of model variants or model distillation, which requires additional training and supports only a pre-selected set of sizes rather than fine-grained adaptation at runtime. In this paper, we propose Elastic Spectral State Space Models (ES-SSM), which require only one-time training at full capacity, but can be directly truncated into arbitrary scales for budgeted, runtime inference without retraining. Our ES-SSM builds on Hankel spectral filtering over a state space model (SSM), coupled with a lightweight input-adaptive gate trained under randomized spectral budgets. Using a shared masked normalization rule over the ordered spectral channels, we encourage predictive capability to concentrate in low-index components, while higher-index components act primarily as refinement. We test our algorithm across long-sequence benchmarks spanning text, logic, retrieval, vision, and audio. We demonstrate that a single ES-SSM model trained once can be truncated to provide competitive performance compared with modern Transformer and SSM baselines at similar parameter scales. Furthermore, by testing under various runtime budgets, we observe smooth and stable budget-performance curves over a wide range of truncation levels.
Abstract:Recently, there has been a revived interest in system neuroscience causation models due to their unique capability to unravel complex relationships in multi-scale brain networks. In this paper, our goal is to verify the feasibility and effectiveness of using a causality-based approach for fMRI fingerprinting. Specifically, we propose an innovative method that utilizes the causal dynamics activities of the brain to identify the unique cognitive patterns of individuals (e.g., subject fingerprint) and fMRI tasks (e.g., task fingerprint). The key novelty of our approach stems from the development of a two-timescale linear state-space model to extract 'spatio-temporal' (aka causal) signatures from an individual's fMRI time series data. To the best of our knowledge, we pioneer and subsequently quantify, in this paper, the concept of 'causal fingerprint.' Our method is well-separated from other fingerprint studies as we quantify fingerprints from a cause-and-effect perspective, which are then incorporated with a modal decomposition and projection method to perform subject identification and a GNN-based (Graph Neural Network) model to perform task identification. Finally, we show that the experimental results and comparisons with non-causality-based methods demonstrate the effectiveness of the proposed methods. We visualize the obtained causal signatures and discuss their biological relevance in light of the existing understanding of brain functionalities. Collectively, our work paves the way for further studies on causal fingerprints with potential applications in both healthy controls and neurodegenerative diseases.