Abstract:The proliferation of textual data on the Internet presents a unique opportunity for institutions and companies to monitor public opinion about their services and products. Given the rapid generation of such data, the text stream mining setting, which handles sequentially arriving, potentially infinite text streams, is often more suitable than traditional batch learning. While pre-trained language models are commonly employed for their high-quality text vectorization capabilities in streaming contexts, they face challenges adapting to concept drift - the phenomenon where the data distribution changes over time, adversely affecting model performance. Addressing the issue of concept drift, this study explores the efficacy of seven text sampling methods designed to selectively fine-tune language models, thereby mitigating performance degradation. We precisely assess the impact of these methods on fine-tuning the SBERT model using four different loss functions. Our evaluation, focused on Macro F1-score and elapsed time, employs two text stream datasets and an incremental SVM classifier to benchmark performance. Our findings indicate that Softmax loss and Batch All Triplets loss are particularly effective for text stream classification, demonstrating that larger sample sizes generally correlate with improved macro F1-scores. Notably, our proposed WordPieceToken ratio sampling method significantly enhances performance with the identified loss functions, surpassing baseline results.
Abstract:Systems and individuals produce data continuously. On the Internet, people share their knowledge, sentiments, and opinions, provide reviews about services and products, and so on. Automatically learning from these textual data can provide insights to organizations and institutions, thus preventing financial impacts, for example. To learn from textual data over time, the machine learning system must account for concept drift. Concept drift is a frequent phenomenon in real-world datasets and corresponds to changes in data distribution over time. For instance, a concept drift occurs when sentiments change or a word's meaning is adjusted over time. Although concept drift is frequent in real-world applications, benchmark datasets with labeled drifts are rare in the literature. To bridge this gap, this paper provides four textual drift generation methods to ease the production of datasets with labeled drifts. These methods were applied to Yelp and Airbnb datasets and tested using incremental classifiers respecting the stream mining paradigm to evaluate their ability to recover from the drifts. Results show that all methods have their performance degraded right after the drifts, and the incremental SVM is the fastest to run and recover the previous performance levels regarding accuracy and Macro F1-Score.
Abstract:Due to the advent and increase in the popularity of the Internet, people have been producing and disseminating textual data in several ways, such as reviews, social media posts, and news articles. As a result, numerous researchers have been working on discovering patterns in textual data, especially because social media posts function as social sensors, indicating peoples' opinions, interests, etc. However, most tasks regarding natural language processing are addressed using traditional machine learning methods and static datasets. This setting can lead to several problems, such as an outdated dataset, which may not correspond to reality, and an outdated model, which has its performance degrading over time. Concept drift is another aspect that emphasizes these issues, which corresponds to data distribution and pattern changes. In a text stream scenario, it is even more challenging due to its characteristics, such as the high speed and data arriving sequentially. In addition, models for this type of scenario must adhere to the constraints mentioned above while learning from the stream by storing texts for a limited time and consuming low memory. In this study, we performed a systematic literature review regarding concept drift adaptation in text stream scenarios. Considering well-defined criteria, we selected 40 papers to unravel aspects such as text drift categories, types of text drift detection, model update mechanism, the addressed stream mining tasks, types of text representations, and text representation update mechanism. In addition, we discussed drift visualization and simulation and listed real-world datasets used in the selected papers. Therefore, this paper comprehensively reviews the concept drift adaptation in text stream mining scenarios.