Abstract:The presence of Artificial Intelligence (AI) in our society is increasing, which brings with it the need to understand the behaviour of AI mechanisms, including machine learning predictive algorithms fed with tabular data, text, or images, among other types of data. This work focuses on interpretability of predictive models based on functional data. Designing interpretability methods for functional data models implies working with a set of features whose size is infinite. In the context of scalar on function regression, we propose an interpretability method based on the Shapley value for continuous games, a mathematical formulation that allows to fairly distribute a global payoff among a continuous set players. The method is illustrated through a set of experiments with simulated and real data sets. The open source Python package ShapleyFDA is also presented.
Abstract:In this paper we present SurvLIMEpy, an open-source Python package that implements the SurvLIME algorithm. This method allows to compute local feature importance for machine learning algorithms designed for modelling Survival Analysis data. Our implementation takes advantage of the parallelisation paradigm as all computations are performed in a matrix-wise fashion which speeds up execution time. Additionally, SurvLIMEpy assists the user with visualization tools to better understand the result of the algorithm. The package supports a wide variety of survival models, from the Cox Proportional Hazards Model to deep learning models such as DeepHit or DeepSurv. Two types of experiments are presented in this paper. First, by means of simulated data, we study the ability of the algorithm to capture the importance of the features. Second, we use three open source survival datasets together with a set of survival algorithms in order to demonstrate how SurvLIMEpy behaves when applied to different models.