Abstract:Motor imagery (MI) is a well-documented technique used by subjects in BCI (Brain Computer Interface) experiments to modulate brain activity within the motor cortex and surrounding areas of the brain. In our term project, we conducted an experiment in which the subjects were instructed to perform motor imagery that would be divided into two classes (Right and Left). Experiments were conducted with two different types of electrodes (Gel and POLiTag) and data for individual subjects was collected. In this paper, we will apply different machine learning (ML) methods to create a decoder based on offline training data that uses evidence accumulation to predict a subject's intent from their modulated brain signals in real-time.
Abstract:Data augmentations are known to improve robustness in speech-processing tasks. In this study, we summarize and compare different data augmentation strategies using S3PRL toolkit. We explore how HuBERT and wav2vec perform using different augmentation techniques (SpecAugment, Gaussian Noise, Speed Perturbation) for Phoneme Recognition (PR) and Automatic Speech Recognition (ASR) tasks. We evaluate model performance in terms of phoneme error rate (PER) and word error rate (WER). From the experiments, we observed that SpecAugment slightly improves the performance of HuBERT and wav2vec on the original dataset. Also, we show that models trained using the Gaussian Noise and Speed Perturbation dataset are more robust when tested with augmented test sets.