Abstract:We present ForceSight, a system for text-guided mobile manipulation that predicts visual-force goals using a deep neural network. Given a single RGBD image combined with a text prompt, ForceSight determines a target end-effector pose in the camera frame (kinematic goal) and the associated forces (force goal). Together, these two components form a visual-force goal. Prior work has demonstrated that deep models outputting human-interpretable kinematic goals can enable dexterous manipulation by real robots. Forces are critical to manipulation, yet have typically been relegated to lower-level execution in these systems. When deployed on a mobile manipulator equipped with an eye-in-hand RGBD camera, ForceSight performed tasks such as precision grasps, drawer opening, and object handovers with an 81% success rate in unseen environments with object instances that differed significantly from the training data. In a separate experiment, relying exclusively on visual servoing and ignoring force goals dropped the success rate from 90% to 45%, demonstrating that force goals can significantly enhance performance. The appendix, videos, code, and trained models are available at https://force-sight.github.io/.
Abstract:Sensing contact pressure applied by a gripper is useful for autonomous and teleoperated robotic manipulation, but adding tactile sensing to a gripper's surface can be difficult or impractical. If a gripper visibly deforms when forces are applied, contact pressure can be visually estimated using images from an external camera that observes the gripper. While researchers have demonstrated this capability in controlled laboratory settings, prior work has not addressed challenges associated with visual pressure estimation in the wild, where lighting, surfaces, and other factors vary widely. We present a deep learning model and associated methods that enable visual pressure estimation under widely varying conditions. Our model, Visual Pressure Estimation for Robots (ViPER), takes an image from an eye-in-hand camera as input and outputs an image representing the pressure applied by a soft gripper. Our key insight is that force/torque sensing can be used as a weak label to efficiently collect training data in settings where pressure measurements would be difficult to obtain. When trained on this weakly labeled data combined with fully labeled data containing pressure measurements, ViPER outperforms prior methods, enables precision manipulation in cluttered settings, and provides accurate estimates for unseen conditions relevant to in-home use.