Abstract:Supervised deep learning approaches to underdetermined audio source separation achieve state-of-the-art performance but require a dataset of mixtures along with their corresponding isolated source signals. Such datasets can be extremely costly to obtain for musical mixtures. This raises a need for unsupervised methods. We propose a novel unsupervised model-based deep learning approach to musical source separation. Each source is modelled with a differentiable parametric source-filter model. A neural network is trained to reconstruct the observed mixture as a sum of the sources by estimating the source models' parameters given their fundamental frequencies. At test time, soft masks are obtained from the synthesized source signals. The experimental evaluation on a vocal ensemble separation task shows that the proposed method outperforms learning-free methods based on nonnegative matrix factorization and a supervised deep learning baseline. Integrating domain knowledge in the form of source models into a data-driven method leads to high data efficiency: the proposed approach achieves good separation quality even when trained on less than three minutes of audio. This work makes powerful deep learning based separation usable in scenarios where training data with ground truth is expensive or nonexistent.
Abstract:Deep Neural Network-based source separation methods usually train independent models to optimize for the separation of individual sources. Although this can lead to good performance for well-defined targets, it can also be computationally expensive. The multitask alternative of a single network jointly optimizing for all targets simultaneously usually requires the availability of all target sources for each input. This requirement hampers the ability to create large training databases. In this paper, we present a model that decomposes the learnable parameters into a shared parametric model (encoder) and independent components (decoders) specific to each source. We propose an interleaved training procedure that optimizes the sub-task decoders independently and thus does not require each sample to possess a ground truth for all of its composing sources. Experimental results on MUSDB18 with the proposed method show comparable performance to independently trained models, with less trainable parameters, more efficient inference, and an encoder transferable to future target objectives. The results also show that using the proposed interleaved training procedure leads to better Source-to-Interference energy ratios when compared to the simultaneous optimization of all training objectives, even when all composing sources are available.