Abstract:This paper is concerned with the fundamental limits of nonlinear dynamical system learning from input-output traces. Specifically, we show that recurrent neural networks (RNNs) are capable of learning nonlinear systems that satisfy a Lipschitz property and forget past inputs fast enough in a metric-entropy optimal manner. As the sets of sequence-to-sequence maps realized by the dynamical systems we consider are significantly more massive than function classes generally considered in deep neural network approximation theory, a refined metric-entropy characterization is needed, namely in terms of order, type, and generalized dimension. We compute these quantities for the classes of exponentially-decaying and polynomially-decaying Lipschitz fading-memory systems and show that RNNs can achieve them.
Abstract:One of the most influential results in neural network theory is the universal approximation theorem [1, 2, 3] which states that continuous functions can be approximated to within arbitrary accuracy by single-hidden-layer feedforward neural networks. The purpose of this paper is to establish a result in this spirit for the approximation of general discrete-time linear dynamical systems - including time-varying systems - by recurrent neural networks (RNNs). For the subclass of linear time-invariant (LTI) systems, we devise a quantitative version of this statement. Specifically, measuring the complexity of the considered class of LTI systems through metric entropy according to [4], we show that RNNs can optimally learn - or identify in system-theory parlance - stable LTI systems. For LTI systems whose input-output relation is characterized through a difference equation, this means that RNNs can learn the difference equation from input-output traces in a metric-entropy optimal manner.
Abstract:To date, a large number of experiments are performed to develop a biochemical process. The generated data is used only once, to take decisions for development. Could we exploit data of already developed processes to make predictions for a novel process, we could significantly reduce the number of experiments needed. Processes for different products exhibit differences in behaviour, typically only a subset behave similar. Therefore, effective learning on multiple product spanning process data requires a sensible representation of the product identity. We propose to represent the product identity (a categorical feature) by embedding vectors that serve as input to a Gaussian Process regression model. We demonstrate how the embedding vectors can be learned from process data and show that they capture an interpretable notion of product similarity. The improvement in performance is compared to traditional one-hot encoding on a simulated cross product learning task. All in all, the proposed method could render possible significant reductions in wet-lab experiments.