Abstract:Short video platforms, such as YouTube, Instagram, or TikTok, are used by billions of users globally. These platforms expose users to harmful content, ranging from clickbait or physical harms to misinformation or online hate. Yet, detecting harmful videos remains challenging due to an inconsistent understanding of what constitutes harm and limited resources and mental tolls involved in human annotation. As such, this study advances measures and methods to detect harm in video content. First, we develop a comprehensive taxonomy for online harm on video platforms, categorizing it into six categories: Information, Hate and harassment, Addictive, Clickbait, Sexual, and Physical harms. Next, we establish multimodal large language models as reliable annotators of harmful videos. We analyze 19,422 YouTube videos using 14 image frames, 1 thumbnail, and text metadata, comparing the accuracy of crowdworkers (Mturk) and GPT-4-Turbo with domain expert annotations serving as the gold standard. Our results demonstrate that GPT-4-Turbo outperforms crowdworkers in both binary classification (harmful vs. harmless) and multi-label harm categorization tasks. Methodologically, this study extends the application of LLMs to multi-label and multi-modal contexts beyond text annotation and binary classification. Practically, our study contributes to online harm mitigation by guiding the definitions and identification of harmful content on video platforms.
Abstract:Objective. Vaccination has engendered a spectrum of public opinions, with social media acting as a crucial platform for health-related discussions. The emergence of artificial intelligence technologies, such as large language models (LLMs), offers a novel opportunity to efficiently investigate public discourses. This research assesses the accuracy of ChatGPT, a widely used and freely available service built upon an LLM, for sentiment analysis to discern different stances toward Human Papillomavirus (HPV) vaccination. Methods. Messages related to HPV vaccination were collected from social media supporting different message formats: Facebook (long format) and Twitter (short format). A selection of 1,000 human-evaluated messages was input into the LLM, which generated multiple response instances containing its classification results. Accuracy was measured for each message as the level of concurrence between human and machine decisions, ranging between 0 and 1. Results. Average accuracy was notably high when 20 response instances were used to determine the machine decision of each message: .882 (SE = .021) and .750 (SE = .029) for anti- and pro-vaccination long-form; .773 (SE = .027) and .723 (SE = .029) for anti- and pro-vaccination short-form, respectively. Using only three or even one instance did not lead to a severe decrease in accuracy. However, for long-form messages, the language model exhibited significantly lower accuracy in categorizing pro-vaccination messages than anti-vaccination ones. Conclusions. ChatGPT shows potential in analyzing public opinions on HPV vaccination using social media content. However, understanding the characteristics and limitations of a language model within specific public health contexts remains imperative.