CNES
Abstract:Large-scale deep neural networks (DNNs) have achieved remarkable success in many application scenarios. However, high computational complexity and energy costs of modern DNNs make their deployment on edge devices challenging. Model quantization is a common approach to deal with deployment constraints, but searching for optimized bit-widths can be challenging. In this work, we present Adaptive Bit-Width Quantization Aware Training (AdaQAT), a learning-based method that automatically optimizes weight and activation signal bit-widths during training for more efficient DNN inference. We use relaxed real-valued bit-widths that are updated using a gradient descent rule, but are otherwise discretized for all quantization operations. The result is a simple and flexible QAT approach for mixed-precision uniform quantization problems. Compared to other methods that are generally designed to be run on a pretrained network, AdaQAT works well in both training from scratch and fine-tuning scenarios.Initial results on the CIFAR-10 and ImageNet datasets using ResNet20 and ResNet18 models, respectively, indicate that our method is competitive with other state-of-the-art mixed-precision quantization approaches.
Abstract:One of the major bottlenecks in high-resolution Earth Observation (EO) space systems is the downlink between the satellite and the ground. Due to hardware limitations, on-board power limitations or ground-station operation costs, there is a strong need to reduce the amount of data transmitted. Various processing methods can be used to compress the data. One of them is the use of on-board deep learning to extract relevant information in the data. However, most ground-based deep neural network parameters and computations are performed using single-precision floating-point arithmetic, which is not adapted to the context of on-board processing. We propose to rely on quantized neural networks and study how to combine low precision (mini) floating-point arithmetic with a Quantization-Aware Training methodology. We evaluate our approach with a semantic segmentation task for ship detection using satellite images from the Airbus Ship dataset. Our results show that 6-bit floating-point quantization for both weights and activations can compete with single-precision without significant accuracy degradation. Using a Thin U-Net 32 model, only a 0.3% accuracy degradation is observed with 6-bit minifloat quantization (a 6-bit equivalent integer-based approach leads to a 0.5% degradation). An initial hardware study also confirms the potential impact of such low-precision floating-point designs, but further investigation at the scale of a full inference accelerator is needed before concluding whether they are relevant in a practical on-board scenario.