Abstract:Visual restoration of underwater scenes is crucial for visual tasks, and avoiding interference from underwater media has become a prominent concern. In this work, we present a synergistic multiscale detail refinement via intrinsic supervision (SMDR-IS) to recover underwater scene details. The low-degradation stage provides multiscale detail for original stage, which achieves synergistic multiscale detail refinement through feature propagation via the adaptive selective intrinsic supervised feature module (ASISF), which achieves synergistic multiscale detail refinement. ASISF is developed using intrinsic supervision to precisely control and guide feature transmission in the multi-degradation stages. ASISF improves the multiscale detail refinement while reducing interference from irrelevant scene information from the low-degradation stage. Additionally, within the multi-degradation encoder-decoder of SMDR-IS, we introduce a bifocal intrinsic-context attention module (BICA). This module is designed to effectively leverage multi-scale scene information found in images, using intrinsic supervision principles as its foundation. BICA facilitates the guidance of higher-resolution spaces by leveraging lower-resolution spaces, considering the significant dependency of underwater image restoration on spatial contextual relationships. During the training process, the network gains advantages from the integration of a multi-degradation loss function. This function serves as a constraint, enabling the network to effectively exploit information across various scales. When compared with state-of-the-art methods, SMDR-IS demonstrates its outstanding performance. Code will be made publicly available.
Abstract:In this paper, we present a novel Amplitude-Modulated Stochastic Perturbation and Vortex Convolutional Network, AMSP-UOD, designed for underwater object detection. AMSP-UOD specifically addresses the impact of non-ideal imaging factors on detection accuracy in complex underwater environments. To mitigate the influence of noise on object detection performance, we propose AMSP Vortex Convolution (AMSP-VConv) to disrupt the noise distribution, enhance feature extraction capabilities, effectively reduce parameters, and improve network robustness. We design the Feature Association Decoupling Cross Stage Partial (FAD-CSP) module, which strengthens the association of long and short-range features, improving the network performance in complex underwater environments. Additionally, our sophisticated post-processing method, based on non-maximum suppression with aspect-ratio similarity thresholds, optimizes detection in dense scenes, such as waterweed and schools of fish, improving object detection accuracy. Extensive experiments on the URPC and RUOD datasets demonstrate that our method outperforms existing state-of-the-art methods in terms of accuracy and noise immunity. AMSP-UOD proposes an innovative solution with the potential for real-world applications. Code will be made publicly available.