Abstract:We show that SCL(FOL) can simulate the derivation of non-redundant clauses by superposition for first-order logic without equality. Superposition-based reasoning is performed with respect to a fixed reduction ordering. The completeness proof of superposition relies on the grounding of the clause set. It builds a ground partial model according to the fixed ordering, where minimal false ground instances of clauses then trigger non-redundant superposition inferences. We define a respective strategy for the SCL calculus such that clauses learned by SCL and superposition inferences coincide. From this perspective the SCL calculus can be viewed as a generalization of the superposition calculus.
Abstract:Abduction in description logics finds extensions of a knowledge base to make it entail an observation. As such, it can be used to explain why the observation does not follow, to repair incomplete knowledge bases, and to provide possible explanations for unexpected observations. We consider TBox abduction in the lightweight description logic EL, where the observation is a concept inclusion and the background knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless answers, such problems usually come with further restrictions on the solution space and/or minimality criteria that help sort the chaff from the grain. We argue that existing minimality notions are insufficient, and introduce connection minimality. This criterion follows Occam's razor by rejecting hypotheses that use concept inclusions unrelated to the problem at hand. We show how to compute a special class of connection-minimal hypotheses in a sound and complete way. Our technique is based on a translation to first-order logic, and constructs hypotheses based on prime implicates. We evaluate a prototype implementation of our approach on ontologies from the medical domain.
Abstract:Superposition is an established decision procedure for a variety of first-order logic theories represented by sets of clauses. A satisfiable theory, saturated by superposition, implicitly defines a minimal term-generated model for the theory. Proving universal properties with respect to a saturated theory directly leads to a modification of the minimal model's term-generated domain, as new Skolem functions are introduced. For many applications, this is not desired. Therefore, we propose the first superposition calculus that can explicitly represent existentially quantified variables and can thus compute with respect to a given domain. This calculus is sound and refutationally complete in the limit for a first-order fixed domain semantics. For saturated Horn theories and classes of positive formulas, we can even employ the calculus to prove properties of the minimal model itself, going beyond the scope of known superposition-based approaches.