Abstract:In the modern world, the development of Artificial Intelligence (AI) has contributed to improvements in various areas, including automation, computer vision, fraud detection, and more. AI can be leveraged to enhance the efficiency of Autonomous Smart Traffic Management (ASTM) systems and reduce traffic congestion rates. This paper presents an Autonomous Smart Traffic Management (STM) system that uses AI to improve traffic flow rates. The system employs the YOLO V5 Convolutional Neural Network to detect vehicles in traffic management images. Additionally, it predicts the number of vehicles for the next 12 hours using a Recurrent Neural Network with Long Short-Term Memory (RNN-LSTM). The Smart Traffic Management Cycle Length Analysis manages the traffic cycle length based on these vehicle predictions, aided by AI. From the results of the RNN-LSTM model for predicting vehicle numbers over the next 12 hours, we observe that the model predicts traffic with a Mean Squared Error (MSE) of 4.521 vehicles and a Root Mean Squared Error (RMSE) of 2.232 vehicles. After simulating the STM system in the CARLA simulation environment, we found that the Traffic Management Congestion Flow Rate with ASTM (21 vehicles per minute) is 50\% higher than the rate without STM (around 15 vehicles per minute). Additionally, the Traffic Management Vehicle Pass Delay with STM (5 seconds per vehicle) is 70\% lower than without STM (around 12 seconds per vehicle). These results demonstrate that the STM system using AI can increase traffic flow by 50\% and reduce vehicle pass delays by 70\%.
Abstract:Point cloud completion networks are conventionally trained to minimize the disparities between the completed point cloud and the ground-truth counterpart. However, an incomplete object-level point cloud can have multiple valid completion solutions when it is examined in isolation. This one-to-many mapping issue can cause contradictory supervision signals to the network because the loss function may produce different values for identical input-output pairs of the network. In many cases, this issue could adversely affect the network optimization process. In this work, we propose to enhance the conventional learning objective using a novel completion consistency loss to mitigate the one-to-many mapping problem. Specifically, the proposed consistency loss ensure that a point cloud completion network generates a coherent completion solution for incomplete objects originating from the same source point cloud. Experimental results across multiple well-established datasets and benchmarks demonstrated the proposed completion consistency loss have excellent capability to enhance the completion performance of various existing networks without any modification to the design of the networks. The proposed consistency loss enhances the performance of the point completion network without affecting the inference speed, thereby increasing the accuracy of point cloud completion. Notably, a state-of-the-art point completion network trained with the proposed consistency loss can achieve state-of-the-art accuracy on the challenging new MVP dataset. The code and result of experiment various point completion models using proposed consistency loss will be available at: https://github.com/kaist-avelab/ConsistencyLoss .