IRIT-IRIS
Abstract:Electronic Health Records (EHRs) provide crucial information for clinical decision-making. However, their high-dimensionality, heterogeneity, and sparsity make clinical prediction challenging. Large Language Models (LLMs) allowed progress towards addressing this challenge by leveraging parametric medical knowledge to enhance EHR data for clinical prediction tasks. Despite the significant achievements made so far, most of the existing approaches are fundamentally task-agnostic in the sense that they deploy LLMs as EHR encoders or EHR completion modules without fully integrating signals from the prediction tasks. This naturally hinders task performance accuracy. In this work, we propose Rewrite-To-Predict (ReToP), an LLM-based framework that addresses this limitation through an end-to-end training of an EHR rewriter and a clinical predictor. To cope with the lack of EHR rewrite training data, we generate synthetic pseudo-labels using clinical-driven feature selection strategies to create diverse patient rewrites for fine-tuning the EHR rewriter. ReToP aligns the rewriter with prediction objectives using a novel Classifier Supervised Contribution (CSC) score that enables the EHR rewriter to generate clinically relevant rewrites that directly enhance prediction. Our ReToP framework surpasses strong baseline models across three clinical tasks on MIMIC-IV. Moreover, the analysis of ReToP shows its generalizability to unseen datasets and tasks with minimal fine-tuning while preserving faithful rewrites and emphasizing task-relevant predictive features.
Abstract:Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task. However, performance improvement comes at the cost of training on vast amounts of annotated data which could be sensitive leading to significant data privacy concerns. In particular, the healthcare domain is one of the most sensitive domains exposed to data privacy issues. In this paper, we present PatientDx, a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data. Our proposal is based on recently proposed techniques known as merging of LLMs and aims to optimize a building block merging strategy. PatientDx uses a pivotal model adapted to numerical reasoning and tunes hyperparameters on examples based on a performance metric but without training of the LLM on these data. Experiments using the mortality tasks of the MIMIC-IV dataset show improvements up to 7% in terms of AUROC when compared to initial models. Additionally, we confirm that when compared to fine-tuned models, our proposal is less prone to data leak problems without hurting performance. Finally, we qualitatively show the capabilities of our proposal through a case study. Our best model is publicly available at https://huggingface.co/ Jgmorenof/mistral\_merged\_0\_4.
Abstract:Electronic Health Record (EHR) tables pose unique challenges among which is the presence of hidden contextual dependencies between medical features with a high level of data dimensionality and sparsity. This study presents the first investigation into the abilities of LLMs to comprehend EHRs for patient data extraction and retrieval. We conduct extensive experiments using the MIMICSQL dataset to explore the impact of the prompt structure, instruction, context, and demonstration, of two backbone LLMs, Llama2 and Meditron, based on task performance. Through quantitative and qualitative analyses, our findings show that optimal feature selection and serialization methods can enhance task performance by up to 26.79% compared to naive approaches. Similarly, in-context learning setups with relevant example selection improve data extraction performance by 5.95%. Based on our study findings, we propose guidelines that we believe would help the design of LLM-based models to support health search.