Abstract:A key characteristic of work on deep learning and neural networks in general is that it relies on representations of the input that support generalization, robust inference, domain adaptation and other desirable functionalities. Much recent progress in the field has focused on efficient and effective methods for computing representations. In this paper, we propose an alternative method that is more efficient than prior work and produces representations that have a property we call focality -- a property we hypothesize to be important for neural network representations. The method consists of a simple application of two consecutive SVDs and is inspired by Anandkumar (2012).
Abstract:Deep Learning models enjoy considerable success in Natural Language Processing. While deep architectures produce useful representations that lead to improvements in various tasks, they are often difficult to interpret. This makes the analysis of learned structures particularly difficult. In this paper, we rely on empirical tests to see whether a particular structure makes sense. We present an analysis of the Semi-Supervised Recursive Autoencoder, a well-known model that produces structural representations of text. We show that for certain tasks, the structure of the autoencoder can be significantly reduced without loss of classification accuracy and we evaluate the produced structures using human judgment.