Abstract:This paper addresses the optimization of human-robot collaborative work-cells before their physical deployment. Most of the times, such environments are designed based on the experience of the system integrators, often leading to sub-optimal solutions. Accurate simulators of the robotic cell, accounting for the presence of the human as well, are available today and can be used in the pre-deployment. We propose an iterative optimization scheme where a digital model of the work-cell is updated based on a genetic algorithm. The methodology focuses on the layout optimization and task allocation, encoding both the problems simultaneously in the design variables handled by the genetic algorithm, while the task scheduling problem depends on the result of the upper-level one. The final solution balances conflicting objectives in the fitness function and is validated to show the impact of the objectives with respect to a baseline, which represents possible initial choices selected based on the human judgment.
Abstract:The collaboration between humans and robots re-quires a paradigm shift not only in robot perception, reasoning, and action, but also in the design of the robotic cell. This paper proposes an optimization framework for designing collaborative robotics cells using a digital twin during the pre-deployment phase. This approach mitigates the limitations of experience-based sub-optimal designs by means of Bayesian optimization to find the optimal layout after a certain number of iterations. By integrating production KPIs into a black-box optimization frame-work, the digital twin supports data-driven decision-making, reduces the need for costly prototypes, and ensures continuous improvement thanks to the learning nature of the algorithm. The paper presents a case study with preliminary results that show how this methodology can be applied to obtain safer, more efficient, and adaptable human-robot collaborative environments.