Abstract:Current text-to-image (T2I) diffusion models can produce high-quality images, and malicious users who are authorized to use the model only for benign purposes might modify their models to generate images that result in harmful social impacts. Therefore, it is essential to verify the integrity of T2I diffusion models, especially when they are deployed as black-box services. To this end, considering the randomness within the outputs of generative models and the high costs in interacting with them, we capture modifications to the model through the differences in the distributions of the features of generated images. We propose a novel prompt selection algorithm based on learning automaton for efficient and accurate integrity verification of T2I diffusion models. Extensive experiments demonstrate the effectiveness, stability, accuracy and generalization of our algorithm against existing integrity violations compared with baselines. To the best of our knowledge, this paper is the first work addressing the integrity verification of T2I diffusion models, which paves the way to copyright discussions and protections for artificial intelligence applications in practice.
Abstract:As an indispensable defensive measure of network security, the intrusion detection is a process of monitoring the events occurring in a computer system or network and analyzing them for signs of possible incidents. It is a classifier to judge the event is normal or malicious. The information used for intrusion detection contains some redundant features which would increase the difficulty of training the classifier for intrusion detection and increase the time of making predictions. To simplify the training process and improve the efficiency of the classifier, it is necessary to remove these dispensable features. in this paper, we propose a novel LA-SVM scheme to automatically remove redundant features focusing on intrusion detection. This is the first application of learning automata for solving dimension reduction problems. The simulation results indicate that the LA-SVM scheme achieves a higher accuracy and is more efficient in making predictions compared with traditional SVM.
Abstract:Learning Automata (LA) are considered as one of the most powerful tools in the field of reinforcement learning. The family of estimator algorithms is proposed to improve the convergence rate of LA and has made great achievements. However, the estimators perform poorly on estimating the reward probabilities of actions in the initial stage of the learning process of LA. In this situation, a lot of rewards would be added to the probabilities of non-optimal actions. Thus, a large number of extra iterations are needed to compensate for these wrong rewards. In order to improve the speed of convergence, we propose a new P-model absorbing learning automaton by utilizing a double competitive strategy which is designed for updating the action probability vector. In this way, the wrong rewards can be corrected instantly. Hence, the proposed Double Competitive Algorithm overcomes the drawbacks of existing estimator algorithms. A refined analysis is presented to show the $\epsilon-optimality$ of the proposed scheme. The extensive experimental results in benchmark environments demonstrate that our proposed learning automata perform more efficiently than the most classic LA $SE_{RI}$ and the current fastest LA $DGCPA^{*}$.