Abstract:Background: Arterial blood pressure (ABP) waveform evolves across each consecutive pulse during the liver transplant surgery. We hypothesized that the quantification of the waveform evolution reflects 1) the acuity of the recipient undergoing liver transplant and 2) the intraoperative dynamics that forecasts short-term surgical outcomes. Methods: In this prospective observational single cohort study on living donor liver transplant surgery, we extracted the waveform morphological evolution from the ABP data with the unsupervised manifold learning waveform analysis. Two quantitative indices, trend movement and fluctuation movement, were developed to represent the slow-varying and fast-varying dynamics respectively. We investigated the associations with the liver disease acuity represented with the Model for End-Stage Liver Disease (MELD) score and the primary outcomes, the early allograft failure (EAF), as well as the recently developed EAF scores, including the Liver Graft Assessment Following Transplantation (L-GrAFT) score, the Early Allograft Failure Simplified Estimation (EASE) score, and the Model for Early Allograft Function (MEAF) score. Results: Sixty recipients were enrolled. The presurgical trend movement was correlated with the MELD scores. It decreased in the anhepatic phase. The neohepatic trend movement correlated with the L-GrAFT scores, the EASE score, and the MEAF score. Regarding the constituent of the EAF scores, the trend movement most correlated with the postoperative day 7 bilirubin. Conclusions: The ABP waveform evolution intricacy in the presurgical phase reflects recipients' acuity condition while that in the neohepatic phase reveal the short-term surgical outcome calculated from laboratory data in postoperative day 7-10. The waveform evolution reflects the intraoperative contribution to the early outcome.