Abstract:Nuclear magnetic resonance (NMR) is a powerful spectroscopic technique that is sensitive to the local atomic structure of matter. Computational predictions of NMR parameters can help to interpret experimental data and validate structural models, and machine learning (ML) has emerged as an efficient route to making such predictions. Here, we systematically study graph-neural-network approaches to representing and learning tensor quantities for solid-state NMR -- specifically, the anisotropic magnetic shielding and the electric field gradient. We assess how the numerical accuracy of different ML models translates into prediction quality for experimentally relevant NMR properties: chemical shifts, quadrupolar coupling constants, tensor orientations, and even static 1D spectra. We apply these ML models to a structurally diverse dataset of amorphous SiO$_2$ configurations, spanning a wide range of density and local order, to larger configurations beyond the reach of traditional first-principles methods, and to the dynamics of the $\alpha\unicode{x2013}\beta$ inversion in cristobalite. Our work marks a step toward streamlining ML-driven NMR predictions for both static and dynamic behavior of complex materials, and toward bridging the gap between first-principles modeling and real-world experimental data.
Abstract:Machine-learning potentials are usually trained on the ground-state, Born-Oppenheimer energy surface, which depends exclusively on the atomic positions and not on the simulation temperature. This disregards the effect of thermally-excited electrons, that is important in metals, and essential to the description of warm dense matter. An accurate physical description of these effects requires that the nuclei move on a temperature-dependent electronic free energy. We propose a method to obtain machine-learning predictions of this free energy at an arbitrary electron temperature using exclusively training data from ground-state calculations, avoiding the need to train temperature-dependent potentials. We benchmark our method on metallic liquid hydrogen at the conditions of the core of gas giants and brown dwarfs.