Abstract:Principal Component Analysis (PCA), a classical dimensionality reduction technique, and 2D Gaussian representation, an adaptation of 3D Gaussian Splatting for image representation, offer distinct approaches to modeling visual data. We present EigenGS, a novel method that bridges these paradigms through an efficient transformation pipeline connecting eigenspace and image-space Gaussian representations. Our approach enables instant initialization of Gaussian parameters for new images without requiring per-image optimization from scratch, dramatically accelerating convergence. EigenGS introduces a frequency-aware learning mechanism that encourages Gaussians to adapt to different scales, effectively modeling varied spatial frequencies and preventing artifacts in high-resolution reconstruction. Extensive experiments demonstrate that EigenGS not only achieves superior reconstruction quality compared to direct 2D Gaussian fitting but also reduces necessary parameter count and training time. The results highlight EigenGS's effectiveness and generalization ability across images with varying resolutions and diverse categories, making Gaussian-based image representation both high-quality and viable for real-time applications.
Abstract:This paper aims to address a new task of image morphing under a multiview setting, which takes two sets of multiview images as the input and generates intermediate renderings that not only exhibit smooth transitions between the two input sets but also ensure visual consistency across different views at any transition state. To achieve this goal, we propose a novel approach called Multiview Regenerative Morphing that formulates the morphing process as an optimization to solve for rigid transformation and optimal-transport interpolation. Given the multiview input images of the source and target scenes, we first learn a volumetric representation that models the geometry and appearance for each scene to enable the rendering of novel views. Then, the morphing between the two scenes is obtained by solving optimal transport between the two volumetric representations in Wasserstein metrics. Our approach does not rely on user-specified correspondences or 2D/3D input meshes, and we do not assume any predefined categories of the source and target scenes. The proposed view-consistent interpolation scheme directly works on multiview images to yield a novel and visually plausible effect of multiview free-form morphing.